Why DEB should be considered for BTK

A. Schmidt, MD

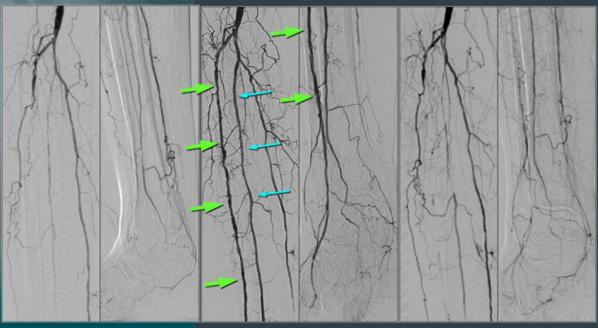
Center of Vascular Medicine – Angiology and Vascular Surgery

Park Hospital Leipzig, Germany

Presenter Disclosure Information

Name: Andrej Schmidt MD

Within the last 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organizations listed below.


Relationshi
Consultant
Stockholder
Consultant
Consultant

Interventional Therapy BTK for CLI-Patients

- First Goal (for tissue loss):
 - To achieve a straight line flow to the foot

- Patency of the treated vessel:
 - Of secondary importance

Angioplasty with Uncoated Balloons (POBA)

Occlusion ATA, Stenosis PA

After POBA both arteries

3-mo re-occlusion

3-Months Angiographical FU after POBA of long BTK-Lesions

- 58 CLI-pts. / 62 limbs
- Mean length of BTK-lesions: 183 mm
- Treatment with non-coated balloons
- Restenosis > 50 % after 3 months: 68.8 %
- Mean length of restenosis: 155 mm

A. Schmidt et al., Catheter Cardiovasc Intervent 2010

Case example from the LACI-Trial

Before therapy

6 Months

Extended patency is needed for wound healing

Experience with Drug-Eluting Balloons BTK

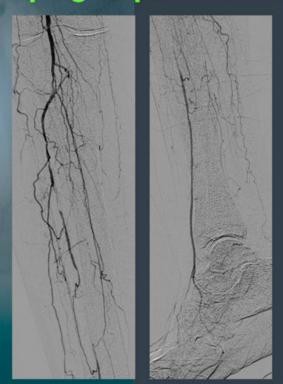
- Prospective registry of patients with BTK-lesions
- Without industry-support
- In.Pact Amphirion Deep Paclitaxel-eluting balloon (Medtronic Invatec)
- Planned FU:
 - Angiography after 3 months
 - Clinical FU 3, 6 and 12 months

BTK-Lesions Treated with the PTX-Coated In.Pact Amphirion Deep

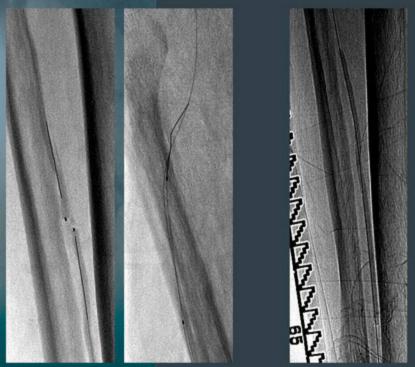
- 104 patients included (Jan 2009 Feb 2010)
- 109 limbs treated with In.Pact Amphirion
- Clinical limb status
 - Ruth 3 19 (17.4 %)
 - Ruth 4
 - Ruth 5
 - Ruth 6

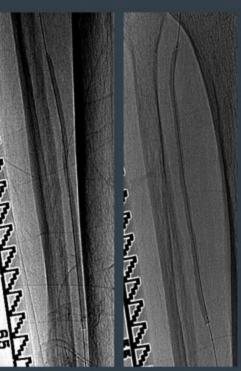
19 (17.4 %)

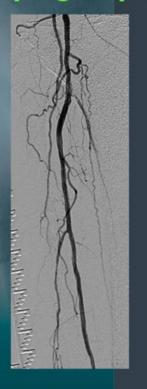
70 (64.2 %)

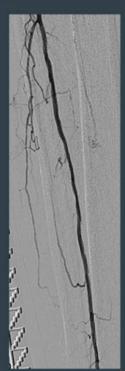

1 (0.9 %)

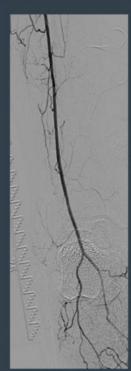
CLI 82.6 %

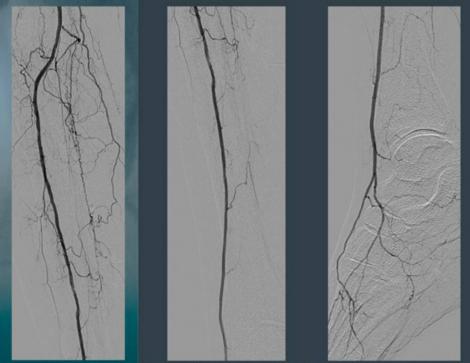

Subgroup with 3-Mo Angio 74 Patients / 84 BTK-Lesions with In.Pact Amphirion

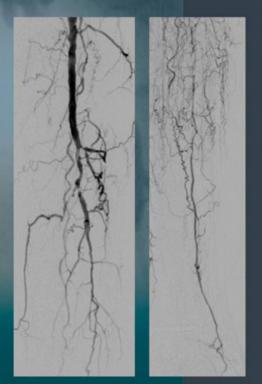

- De-novo	55 (65.5 %)
-----------	-------------

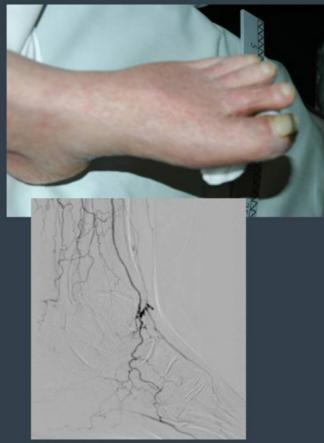

- Restenosis 19 (22.6 %)
- In-stent restenosis 10 (11.9 %)
- Mean lesion-length 173 ± 87 mm
- Stenosis 32 (38.1 %)
- Occlusion 52 (61.9 %)

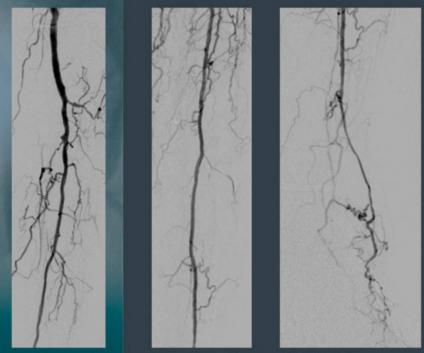




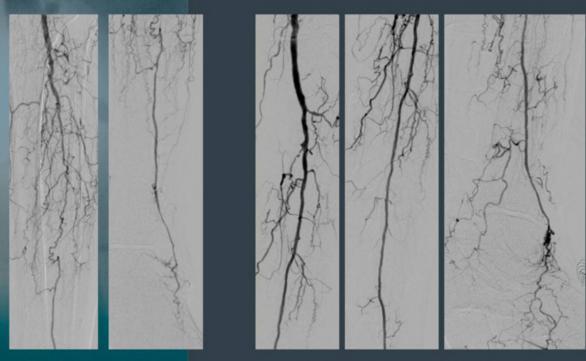






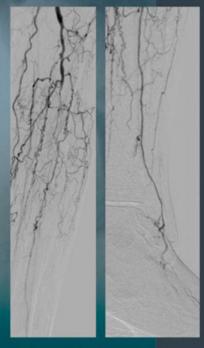

3-months follow-up angiography

Rutherford 5 left



After Balloon-Angioplasty

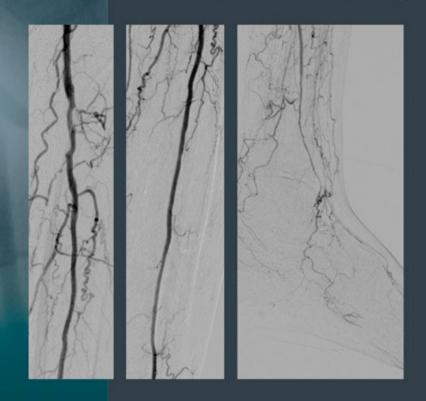
Non-coated balloon 2.5/150


First Reocclusion after 6 weeks

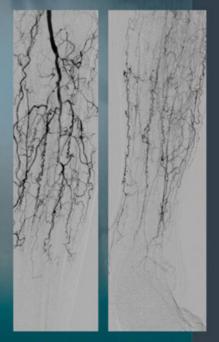
First re-occlusion

Second balloon-angioplasty

Second Re-Occlusion after 4 Months

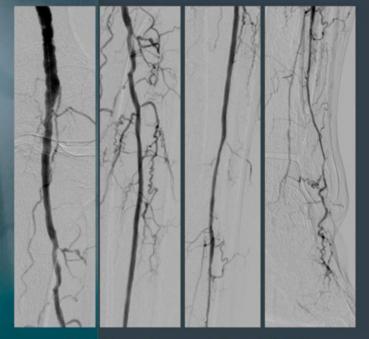


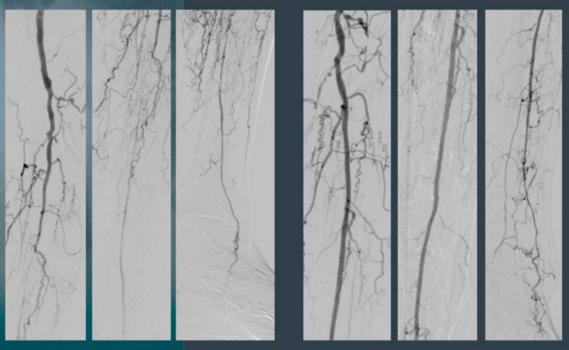
Second re-occlusion



Stenting (3 x 4/80mm Maris Deep)

Result after 3rd PTA + Stenting


Third Re-Occlusion (Stent-Reocclusion) after 5 months


Third reocclusion

Third Re-Occlusion (Stent-Reocclusion) after 5 months

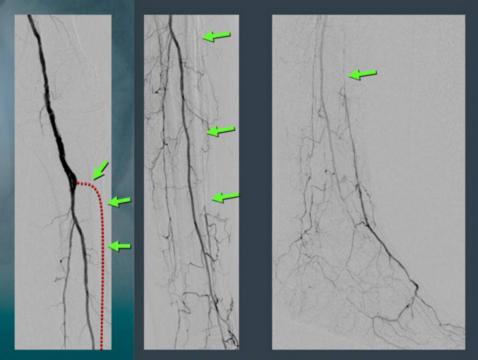
Fourth re-intervention (POB)

Fourth Re-Occlusion, PTA with DEB

Fourth reocclusion

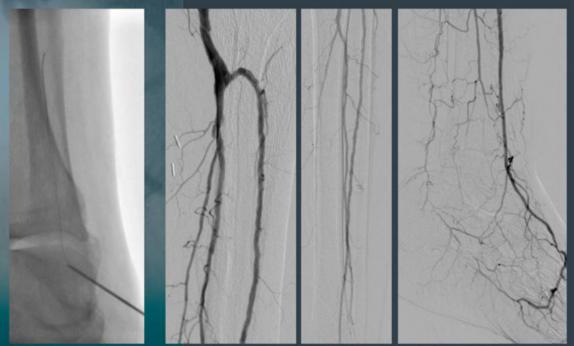
Fifth re-intervention (DEB)

6-Months after DEB

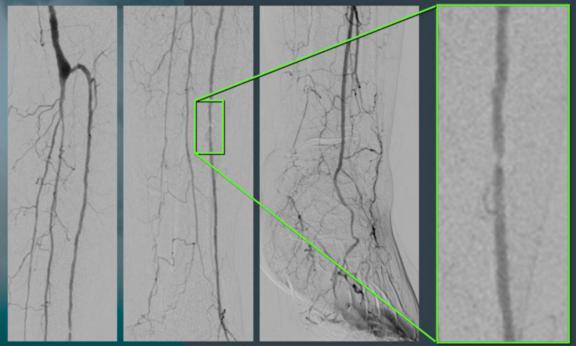

Wound completely healed

	РОВ ВТК	DEB BTK
Lesion-length	183 mm	173 mm
Restenosis >50 % @ 3 Mo	69 %	27 %

61% restenosis reduction


Length of restenosis 155 mm 64 mm

Focal Restenosis after DCB BTK


Occlusion left anterior tibial artery

Focal Restenosis after DCB BTK

Retrograde recanalization, 3 x 2.5/120 In. Pact Amphirion

Focal Restenosis after DCB BTK

3-months angiogram

Riskfactors for Restenosis after DEB

	Apc	p (P3)	Prox.	Mid.	Distal	Foot
n treated segments		11	54	45	37	13
Restenosis- rate	9	.1%	9.3%	20.0%	18.9%	38.5%

No involvement of foot-arteries in the POBA-series

12.5 Months Follow-Up (Whole Cohort)

Mortality

16.3 %

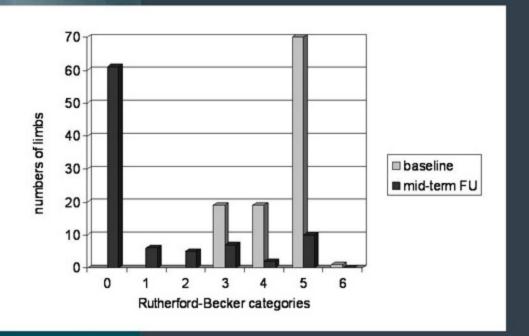
Amputation

4 (3 BTK, 1 forefoot)

Angiography available in 3/4 patients 7-21 days
 prior to amputation showing a patent treated artery!

Clinical improvement

91.2 %


74 %

Complete woundhealing

Re-intervention-rate

17.3 %

Mid-Term Follow-Up (378 days) (Entire patient-cohort,)

Plane Balloon Angioplasty BTK in CLI-Patients

- 101 Diabetes-patients (106 CLI)
- Rutherford 5 = 33; Rutherford 6 = 74
- Isoliated infrapopliteal lesions
- Lesionlength: 213 mm

Limb-salvage at 2.9 years 93 %

Plane Balloon Angioplasty of Tibial Arteries in CLI-Patients

- 111 CLI-patients
- 1-year FU:

Primary patency rate (Duplex) 33 %

Limb salvage rate75 %

Re-intervention rate50 %

"Re-intervention inevitable part of the treatment of CLI-patients with BTK-lesions using POBA."

Fernandez et al. J Vasc Surg 2010;52:834-42

The Value of DEB BTK

Randomized trials DEB BTK:

- PICCOLO:
 - Paccocath vs. bare balloon

- IN.PACT Deep:
 - In.Pact Amphirion PTX-eluting balloon vs.
 - Uncoated Amphirion Deep balloon (Medtronic Invatec)

Will DEB improve the results for Patients with BTK-Obstructions?

- Limb-salvage
- Freedom of symptoms
- Time to healing
- Necessity for repeat revascularization

Open Questions using DES or DEB BTK

Which patients should be treated using drug-coated devices?

- Can we expect a difference between
 Diabetes- and non-Diabetes patients?
- Will restpain-patients especially benefit ?

Open Questions using DES or DEB BTK

- DES:
- Selfexpanding or balloon-expandable?

Will DEB be effective in calcified lesions?

Will DEB be effective after subintimal PTA?

Open Questions using DES or DEB BTK

 Will the use of DES and DEB expand angioplasty of BTK-lesions to claudicants?

 Which anticoagulation would you recommend after DEB ?